Cho a,b,c,d là các số nguyên dương, thỏa mãn ab=cd.
Chứng minh rằng: \(a^{2016}+b^{2016}+c^{2016}+d^{2016}\)là hợp số
Cho a,b,c,d là các số nguyên dương, thỏa mãn ab=cd.
Chứng minh rằng: \(a^{2016}+b^{2016}+c^{2016}+d^{2016}\)là hợp số
Cho các số nguyên dương a,b,c,d sao cho a>b, c>d.Chứng minh rằng: a+b+c+d=ab-cd thì a+c là hợp số.
cho các số nguyên dương a, b, c, d sao cho a>b, c>d. chứng minh rằng nếu a+b+c+d=ab-cd thì a+c là hợp số
Cho \(a,b,c,d\)là các số nguyên dương thỏa \(ab=cd\)
CMR: \(A=a^n+b^n+c^n+d^n\) là một hợp số với mọi \(n\in N\)
cho a,b,c,d là các số thực dương thỏa mãn abcd=1. CMR
\(\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+cd}+\frac{1}{1+d+da}>1\) >1
cho hình thang ABCD (AB//CD),AC vuông góc với BD,biết AB có đọ dài là a ,DC có đọ dài là b,BD có độ dài là c,AC có đọ dài là d.CMR a+b,c,d là độ dài 3 cạnh của 1 tam giác vuông
cho a,b,c,d là các số tự nhiên thỏa mãn : đôi 1 khác nhau và a2+d2=b2+c2=t.
chứng minh ab+cd và ac+bd không thể đồng thời là số nguyên tố
Bài 1:Cho a,b,c là các số thực dương thỏa mãn $a^3+b^3+c^3−3abc=1$ .Tìm minP=$a^2+b^2+c^2$
Bài 2: Cho a,b,c,d thỏa mãn a>b>c>d và ac+bd=(b+d+a−c)(b+d−a+c) . Chứng minh ab+cd là hợp số
Bài 3:
1. Tìm hai số nguyên dương a và b thỏa mãn $a^2+b^2=[a,b]+7(a,b)$(với [a,b]=BCNN(a,b);(a,b)=UCLN(a,b))
2. Cho ΔABC thay đổi có AB=6,AC=2BC.Tìm giá trị lớn nhất của diện tích ΔABC.
Bài 4: Cho a,b,c là các số nguyên tố thỏa mãn: $20abc<30(a+b+c)<21abc$. Tìm a,b,c.