Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
N.T.M.D

Cho các số ko âm a,b,c.Chứng minh

(\(a^2\)+1)(\(a^2b^2\)+4)(\(a^2b^2c^2\)+16) \(\ge\)64\(a^3b^2c\)

l҉o҉n҉g҉ d҉z҉
5 tháng 5 2021 lúc 18:19

Áp dụng bất đẳng thức AM-GM ta có :

\(a^2+1\ge2\sqrt{a^2}=2\left|a\right|=2a\)

\(a^2b^2+4\ge2\sqrt{4a^2b^2}=2\left|2ab\right|=4ab\)

\(a^2b^2c^2+16\ge2\sqrt{16a^2b^2c^2}=2\left|4abc\right|=8abc\)

Nhân vế với vế các bđt trên ta có đpcm

Dấu "=" xảy ra <=> a = b = c

Khách vãng lai đã xóa
Phạm Thành Đông
5 tháng 5 2021 lúc 18:20

Vì \(a\ge0\)nên áp dụng bất đẳng thức Cô-si, ta được:

\(a^2+1\ge2a\left(1\right)\).

Chứng minh tương tự, ta được:

\(a^2b^2+4\ge4ab\left(a,b\ge0\right)\left(2\right)\).

Chứng minh tương tự, ta được:

\(a^2b^2c^2+16\ge8abc\left(a,b,c\ge0\right)\left(3\right)\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\)ta được:

\(\left(a^2+1\right)\left(a^2b^2+4\right)\left(a^2b^2c^2+16\right)\ge2a.4ab.8abc=64a^3b^2c\)(điều phải chứng minh).

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a^2=1\\a^2b^2=4\\a^2b^2c^2=16\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\ab=2\\abc=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=2\end{cases}}\)

Và \(a,b,c\ge0\)

Vậy \(\left(a^2+1\right)\left(a^2b^2+4\right)\left(a^2b^2c^2+16\right)\ge64a^3b^2c\)với \(a,b,c\ge0\).

Khách vãng lai đã xóa

Các câu hỏi tương tự
N.T.M.D
Xem chi tiết
N.T.M.D
Xem chi tiết
N.T.M.D
Xem chi tiết
Blue Frost
Xem chi tiết
zZz Cool Kid_new zZz
Xem chi tiết
Mai
Xem chi tiết
Fire Sky
Xem chi tiết
Nguyễn Thị Quỳnh Anh
Xem chi tiết
Aura Phạm
Xem chi tiết