1) Cho x,y,a,b là các số thực thỏa mãn :\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\) và \(x^2+y^2=1\)
Chứng minh \(\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}????\)
2) Cho a,b,c là các số thực dương. Chứng minh bất đẳng thức:
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1
a) Cho các số thực dương a,b thỏa mãn : a100+b100=a101+b101=a102+b102.Tính giá trị biểu thức P=a2004+b2004
b) với mỗi số nguyên dương n , Pn=1.2.3...n (tích các số tự nhiên liên tiếp đến n).Chứng minh 1+1.P1+2P2+3P3+...+n.Pn=Pn+1
Chứng minh các bất đẳng thức sau bằng phương pháp phản chứng:
a) Chứng minh rằng nếu \(a\ge3,b\ge3,a^2+b^2\ge25\)thì \(a+b\ge7\)
b) Cho ba số a, b, c đôi một khác nhau. Chứng minh rằng tồn tại trong các số 9ab, 9bc, 9ca nhỏ hơn \(\left(a+b+c\right)^2\)
c) Chứng minh rằng không tồn tại b số dương a, b, c nào thỏa mãn cả ba đẳng thức:
\(a+\frac{1}{b}< 2;b+\frac{1}{c}< 2;c+\frac{1}{a}< 2\)
cho x,y,a,b là các số thực thỏa mãn
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\) và \(x^2+y^2=1\)
CM : \(\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{ \left( a+b\right)^{1003}}\)
chứng minh rằng không có các số dương a,b,c nào thỏa mãn cả 3 bất đẳng thức
4(1-b)>1 ,4b(1-a)>1,4c(1-a)>1
Chứng minh rằng: Nếu a, b, c là các số dương thỏa mãn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge a+b+c\)
Thì ta có bất đẳng thức:
\(a+b+c\ge3abc\)
Cho a, b là các số dương thỏa mãn điều kiện ab=1. Chứng minh rằng: \(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\ge8\)
Cho bốn số nguyên dương a,b,c,d thỏa mãn đẳng thức a2 + b2 = c2 + d2. Chứng minh rằng số a+b+c+d không thể là một số nguyên tố.
Với các số dương a, b, c thỏa mãn a+b+c=3abc, chứng minh rằng:
\(a^4b^4+b^4c^4+c^4a^4>=3a^4b^4c^4\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^5}{bc^2}+\frac{b^5}{ca^2}+\frac{c^5}{ab^2}>=a^2+b^2+c^2\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}>=\frac{1}{9}\left(a+b+c\right)\)