cho các số thực không âm a, b, c có tổng bằng 1. tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
\(A=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)
Cho biểu thức P =\(\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2a+2c-b\right)^2\)
1) Chứng minh P =\(9\left(a^2+b^2+c^2\right)\)
2)Nếu a,b,c là các số thực thỏa mãn ab + bc + ca = -1, tìm giá trị nhỏ nhất của biểu thức P
cho a,b,c là 3 số không đồng thời bằng 0. chứng minh rằng có ít nhất một trong các biểu thức sau có giá trị dương :
\(x=\left(a-b+c\right)^2+8ab\)
\(y=\left(a-b+c\right)^2+8bc\)
\(z=\left(a-b+c\right)^2-8ca\)
Cho a,b,c là các số thực dương thỏa mãn:ab+bc+ac=3abc
Tìm giá trị nhỏ nhất của biểu thức K=\(\frac{a^2}{c\left(cc+aa\right)}\)+\(\frac{a^2}{a\left(aa+bb\right)}\)+\(\frac{c^2}{b\left(bb+cc\right)}\)
Cho một biểu thức, biết biểu thức là:
\(\left[\left(a+b\right)^3+\left(c-d\right)^3-\left(a+c\right)^3-\left(b-d\right)^3\right]\left(mn\right)^2=63504.\)
Các số cần tìm cho, biết:
- TRC của 4 số a, b, c, d là 4,5. TRC của 2 số a và c là 5. a hơn c 2 đơn vị, d bằng \(\frac{1}{2}b\).
- TRC của 4 số a, b, m, n là 5. Biết \(\frac{m}{a+c}=0,7\), tổng của a và b là a + b, tổng của m và n là \(\left(a+b\right)\frac{10-1}{10+1}\).
a) Tìm a, b, c, d, m và n.
b) Nếu thêm p vào bên phải của biểu thức, biết \(p\ne0\)và ở giữa p có 16 số chẵn, nhưng các số chẵn ≈ 7 ; 8. Các số chẵn chia hết cho 5. Tính giá trị của biểu thức mới.
c) Tính:
\(am^2\left(5^3+abcd-\left(ab^2-cd^2\right)\right)+\left(\sqrt{\left(m+1\right)^{2c}}-\sqrt{\left(50c\right)^c\times2n}\right)..\)
d) Tính giá trị của X, biết rằng:
\(X=9ab-9cd+9mn+...+\frac{9mn}{8}.\)
Chứng minh rằng: \(X⋮45\)và giá trị của ... là số có tử số của số đó bé hơn tử số của số \(\frac{975}{4}\)là Y. Biết rằng:
\(Y=\frac{15-1}{15+1}\left(d^d-\frac{d}{m}\right)n\sqrt{c}.\)
Cho các số a,b,c thỏa mãn \(2\left(b^2+bc+c^2\right)=3\left(3-a^2\right)\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức T = a+b+c
tìm giá trị nhỏ nhất của biểu thức (a,b,c là các số dương)
\(B=\left(a+b+c\right)\left[\frac{2001}{a+b}+\frac{2001}{b+c}+\frac{2001}{c+a}\right]\)
Cho ba số a, b, c có tổng khác 0 thỏa mãn \(a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\). Tính giá trị của biểu thức \(P=\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
a) Tìm giá trị nhỏ nhất của biểu thức \(x^2-8x+5\)
b) Cho \(a^3+b^3+c^3=3abc\) và \(a+b+c\) ≠ 0
Tính giá trị của biểu thức N =\(\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)