cho các số dương a,b,c thỏa mãn
abc=ab+bc+ca
cmr: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+2c+b}< \frac{3}{16}\)
Chứng minh rằng nếu a , b , c > 0 thỏa mãn abc = ab + bc + ca thì \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}<\frac{3}{16}\left(\le\frac{3}{32}\right)\)
Bạn nào học qua rồi thì giải hộ tớ bài này với.
1.Cho a, b, c là độ dài 3 cạnh của 1 tam giác
Chứng minh: (a+b-c)(b+c-a)(c+a-b)<=abc
2.Cho a, b, c>0 thoả mãn ab+bc+ca=1.
Tim min M = \(\frac{3a^2b^2+1}{c^2+1}+\frac{3b^2c^2+1}{a^2+1}+\frac{3c^2a^2+1}{b^2+1}\)
3.Cho a,b,c>0 thoả mãn a+b+c=3.
Tìm min N = \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)
4.Cho a, b, c>0 thoả mãn abc=1
Chứng minh: \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ac}<=1\)
Với các số dương a, b, c thỏa mãn a+b+c=3abc, chứng minh rằng:
\(a^4b^4+b^4c^4+c^4a^4>=3a^4b^4c^4\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^5}{bc^2}+\frac{b^5}{ca^2}+\frac{c^5}{ab^2}>=a^2+b^2+c^2\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}>=\frac{1}{9}\left(a+b+c\right)\)
Cho a;b;c là các số thực không âm thỏa mãn \(a^2+b^2+c^2>0\)\(.CMR:\)
\(\frac{3a^2-bc}{2a^2+b^2+c^2}+\frac{3b^2-ca}{+2b^2+c^2+a^2}+\frac{3c^2-ab}{2c^2+a^2+b^2}\le\frac{3}{2}\)
Bài 1Cho 3 số hữu tỉ a,b,c thỏa man abc=1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\)
CMR trong 3 số a,b,c có 1 số bằng bình phương số còn lại
Bài 2 Cho a,b,c là các số khác 0 thỏa mãn \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Tính giá trị biểu thức \(P=\left(1+\frac{1}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
cho n là số nguyên dương cmr:
\(\frac{1}{n+1}+\frac{1}{n+2}+.....+\frac{1}{3n+1}>1\)
cho các số dương a,b,c thỏa mãn:
abc=ab+bc+ca
cmr: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+2c+b}< \frac{3}{16}\)
bài 3 : với a,b,c thuộc R thỏa mãn : (3a+3b+3c)^3 =24+(3a+b-c)+(3b+c-a)^3 +(3c+a-b)^3
CM : (a+2b)(b+2c)(c+2a)=1
bài 4 : CM với n là số nguyên dương thì : 5^n(5^n+3^n)-2^n(9^n+11^n) chia hết cho 21
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh rằng
\(\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)