Từ giả thiết đề bài ta có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
\(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0.\)
Có: \(a^2+b^2+c^2=1\Rightarrow\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
Từ đó ta có: \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0.\)
Dấu bằng xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0.\)
Kết hợp với điều kiện : \(a^2+b^2+c^2=1\)và \(a^3+b^3+c^3=1\)ta tìm được bộ ba số: a = 1; b = 0; c = 0 hoặc a= 0; b = 1; c = 0 hoặc a = 0; b = 0; c = 1.
Từ đó tìm ra S = 1 .
THEO MÌNH a = 1 b = 0 c = 0 hoặc là a = 0 b = 1 c = 0
\(\Rightarrow\)S = 1 mình đã rất mỏi tay nên ko diễn giải dc
FC : ĐÃ RẤT CỐ GẮNG
làm theo cách xét: x^3>x^2 khi...
x^3<x^2 khi ...
x^3=x^2 khi...
chắc là sẽ đc