Cho các điểm M, N, P theo thứ tự thuộc các cạnh BC, CA, AB của tam giác ABC cân tại A sao cho tứ giác MNAP là hình bình hành. Gọi O là giao điểm của BN và CP. Chứng minh \(\widehat{OMP}\)= \(\widehat{AMN}\)
Cho tam giác ABC nhọn có góc BAC> góc ACB. Đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC, CA lần lượt tại M,N,E. Gọi K là giao điểm của BO và NE. Chứng minh
a) \(\widehat{AOB}=90^{\sigma}+\frac{\widehat{ACB}}{2}\)
b) 5 điểm A, M, K, O, E cùng thuộc một đường tròn
c Gọi T là giao điểm BO với AC. Chứng minh: KT.BN = KB.ET
Cho tam giác nhọn ABC ( AB AC < ) nội tiếp đường tròn (O) có tâm là O . Các đường cao BE CF , của tam giác ABC cắt nhau tại H . Đường phân giác ngoài của BHC cắt các cạnh AB AC , lần lượt tại M N, . Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác của BAC tại điểm I khác A IM, cắt BE tại điểm P và IN cắt CF tại điểm Q . 1. Chứng minh tam giác AMN cân tại A . 2. Chứng minh HPIQ là hình bình hành. 3. Chứng minh giao điểm của hai đường thẳng HI và AO thuộc đường tròn (O) .
Cho hình thang cân ABCD (BC//AD), hai đường chéo AC, BD cắt nhau tại điểm O sao cho \widehat{BOC} = 60 độ. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BC,OA,AB,CD.a) Chứng minh tứ giác DMNC nội tiếp đượcb) Chứng minh tam giác MNQ là tam giác đềuc) So sánh các góc \widehat{MQP}, \widehat{QND}, \widehat{NMC} d) Chứng minh trực tâm của tam giác MNQ thẳng hàng với O, I
1. Cho tam giác ABC vuông tại A. Gọi I là giao điểm các đường phân giác trong của tam giác.
biết IB=\(\sqrt{5}\); IC=\(\sqrt{10}\). Tính BC
2. Cho tam giác ABC nhọn. Hai đường cao BD và CE cắt nhau tại H. Trên hai đoạn HB và HC lần lượt lấy 2 điểm M,N sao cho góc AMC = góc ANB= 90o. Chứng minh tam giác AMN cân.
3. Cho hình vuông ABCD có cạnh AB=1, P và Q lần lượt là các điểm thuộc AB và AD sao cho tam giác APQ có chu vi =2. Chứng minh góc PCQ=45o
cho tam giác ABC cân tại A(A<90) nội tiếp trong(O;R). gọi M,N,P lần lượt là điểm chính giữa của các cung BC,CA,AB và I là giao điểm của AM và CP
a) CM: tam giác AIP cân; MN vuông góc CP
b) gọi (d) là duong29 thẳng thay đổi đi qa A. tìm tập hợp các điểm K thuộc (d) để KB+KC nhỏ nhất
c) khi A=60 độ,AB=5cm tính V của hình tạo thành khi quay tam giác ABC 1 vòng quanh cạnh BC
giải gấp giùm e vs ạ
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS.
b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng.
c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS. b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng. c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
Cho tam giác ABC cân tại A và nội tiếp đường tròn (O) đường kính AK; lấy điểm I thuộc cung nhỏ AB của đường tròn (O)(I≠A,B). Gọi M là giao điểm của IK và BC, đường trung trực của đoạn thẳng IM cắt AB và AC lần lượt tại D và E. Chứng minh rằng tứ giác ADME là hình bình hành.