Gọi \(M\left(x;y\right)\) là điểm cố định mà (C) đi qua
\(\Leftrightarrow x^2+y^2+\left(m+2\right)x-\left(m+4\right)y+m+1=0\) ;\(\forall m\)
\(\Leftrightarrow x^2+y^2+2x-4y+1+m\left(x-y+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2x-4y+1=0\\x-y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2x-4y+1=0\\y=x+1\end{matrix}\right.\)
\(\Rightarrow x^2+\left(x+1\right)^2+2x-4\left(x+1\right)+1=0\)
\(\Leftrightarrow2x^2-2=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=-1\Rightarrow y=0\end{matrix}\right.\)
\(\Rightarrow\) (C) luôn đi qua 2 điểm cố định \(A\left(1;2\right);B\left(-1;0\right)\)
\(\Rightarrow\) Đường tròn luôn có dây cung cố định AB
\(\Rightarrow\) Để bán kính đường tròn là nhỏ nhất khi và chỉ khi AB là đường kính
\(\Leftrightarrow\) Tâm I là trung điểm AB \(\Rightarrow I\left(0;1\right)\)
\(\Rightarrow m=-2\)