Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thảo Hân

cho (C) : x2 +y2 +4x+4y +6=0 và đường thẳng d: x + my-2m+3=0 với m là tham số thực . gọi I là tâm đường tròn C . tìm m để Δ cắt (C) tại 2 điểm phân biệt A,B sao cho diện tích Δ IAB là lớn nhất.

Nguyễn Việt Lâm
2 tháng 6 2020 lúc 1:13

Đường tròn (C) tâm \(I\left(-2;-2\right)\) bán kính \(R=\sqrt{2}\)

\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}\le\frac{1}{2}IA.IB=\frac{1}{2}R^2\)

Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\) hay tam giác \(AIB\) vuông cân tại I

Gọi H là trung điểm AB \(\Rightarrow d\left(I;AB\right)=IH=\frac{R}{\sqrt{2}}=1\)

Áp dụng công thức khoảng cách:

\(\frac{\left|-2-2m-2m+3\right|}{\sqrt{1^2+m^2}}=1\)

\(\Leftrightarrow\left|4m-1\right|=\sqrt{m^2+1}\)

\(\Leftrightarrow16m^2-8m+1=m^2+1\)

\(\Leftrightarrow15m^2-8m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=\frac{8}{15}\end{matrix}\right.\)


Các câu hỏi tương tự
Nhi Nguyễn
Xem chi tiết
Nguyen ANhh
Xem chi tiết
Đông Viên
Xem chi tiết
Nguyễn Thanh Phong
Xem chi tiết
Mẫn Li
Xem chi tiết
Mẫn Li
Xem chi tiết
Hà Như Thuỷ
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Julian Edward
Xem chi tiết