Đường tròn (C) tâm \(I\left(-2;-2\right)\) bán kính \(R=\sqrt{2}\)
\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}\le\frac{1}{2}IA.IB=\frac{1}{2}R^2\)
Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\) hay tam giác \(AIB\) vuông cân tại I
Gọi H là trung điểm AB \(\Rightarrow d\left(I;AB\right)=IH=\frac{R}{\sqrt{2}}=1\)
Áp dụng công thức khoảng cách:
\(\frac{\left|-2-2m-2m+3\right|}{\sqrt{1^2+m^2}}=1\)
\(\Leftrightarrow\left|4m-1\right|=\sqrt{m^2+1}\)
\(\Leftrightarrow16m^2-8m+1=m^2+1\)
\(\Leftrightarrow15m^2-8m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=\frac{8}{15}\end{matrix}\right.\)