a ) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\x-1\ne0\\x^2-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-1\\x\ne1\end{cases}}}\)
b ) \(P=\frac{2x+3}{x+1}-\frac{x+2}{x-1}+\frac{3x+5}{x^2-1}\)
\(=\frac{\left(2x+3\right)\left(x-1\right)-\left(x+2\right)\left(x+1\right)+\left(3x+5\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(2x^2+x-3\right)-\left(x^2+3x+2\right)+\left(3x+5\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)
Sr còn thiếu
Để \(P\in Z\Leftrightarrow\frac{x}{x+1}=\frac{x+1-1}{x+1}=1-\frac{1}{x+1}\in Z\Rightarrow x+1\inƯ\left(1\right)\)
\(\Rightarrow x+1=\left\{-1;1\right\}\Rightarrow x=\left\{-2;0\right\}\)