a) \(P=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)
a) \(ĐKXĐ:\) x khác + 3
\(b,P=\dfrac{3\left(x-3\right)+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(P=\dfrac{4}{x-3}\)
c) \(P=4=\dfrac{4}{x-3}=4=x-3=1=x=4\)
a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
b: \(P=\dfrac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{4}{x-3}\)
c: Để P=4 thì x-3=1
hay x=4
\(a,ĐK:x\ne\pm3\\ b,P=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{4}{x-3}\\ c,P=4\Leftrightarrow\dfrac{4}{x-3}=4\Leftrightarrow x-3=1\Leftrightarrow x=4\left(tm\right)\)
a) b,P=3(x−3)+x+3+18(x+3)(x−3)b,P=3(x−3)+x+3+18(x+3)(x−3)
P=4x+12(x+3)(x−3)P=4x+12(x+3)(x−3)
P=4x−3P=4x−3
c)