Không em, phải thỏa cả ĐKXĐ ban đầu chứ
Do đó \(x=-2\) \(\Rightarrow A=-1\) mới là GTNN của A
Không em, phải thỏa cả ĐKXĐ ban đầu chứ
Do đó \(x=-2\) \(\Rightarrow A=-1\) mới là GTNN của A
Xét các số dương x, y thỏa mãn điều kiện x + y =1. Tìm GTNN của biểu thức:
\(A=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
1. Nêu Điều kiện xác định và rút gọn biểu thức A
2. Tính giá trị của biểu thức A khi x=9
3. Khi x thỏa mãn điều kiện xác định . hãy tìm giá trị nhỏ nhất của biểu thức B , với B=A (x-1)
a, Cho ba số nguyên x,y,z thỏa mãn điều kiện x+y+z chia hết cho 6 . Chứng minh rằng giá trị của các biểu thức
M = (x+y)(y+z)(z+x) -2xyz cũng chia hết cho 6
b, Cho hai số thực x,y dương thỏa mãn:x+y >= 4
Tìm GTNN của biểu thức S=\(\frac{9x}{2}\)+2y +\(\frac{12}{x}\)+\(\frac{2}{y}\)
giúp em với ạ
a) Với x,y là các số dương thỏa mãn điều kiện \(x\ge2y\), tìm giá trị nhỏ nhất của biểu thức \(M=\frac{x^2+y^2}{xy}\)
b) Chứng minh rằng : \(x^2+3+\frac{1}{x^2+3}\ge\frac{10}{3}\)
Cho x, y là 2 số thực dương thỏa mãn điều kiện \(x+y\le\frac{4}{3}\) . Tìm GTNN của biểu thức \(A=x+y+\frac{1}{x}+\frac{1}{y}\)
Cho biểu thức A = \(\sqrt{1+\sqrt{x}}^n + \sqrt{1-\sqrt{x}}^n\)với x, n là nguyên dương
Chứng minh rằng A là số nguyên với mọi giá trị của n thỏa mãn điều kiện
Cho hai số x,y thỏa mãn điều kiện 3x+y=1
Tìm GTNN của biểu thức A=3x2+y2
biết x,y thỏa mãn điều kiện x+y=1 tìm GTNN của biểu thức c=x^2+y^2+xy
cho đa thức \(P\left(x\right)=ax^2+bx+c\) thỏa mãn đồng thời các điều kiện \(P\left(x\right)\ge0\)với mọi số thực x và b>a. Tìm GTNN của biểu thức \(Q=\frac{a+b+c}{b-a}\)