\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Rightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Rightarrow a^2+b^2+2ab=0\)
\(\Rightarrow\left(a+b\right)^2=0\)
\(\Rightarrow a+b=0\Rightarrow a=-b\Rightarrow dpcm\)
\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Rightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Rightarrow a^2+b^2+2ab=0\)
\(\Rightarrow\left(a+b\right)^2=0\)
\(\Rightarrow a+b=0\Rightarrow a=-b\Rightarrow dpcm\)
Cho biết \(2\left(a^2+b^2\right)=\left(a-b\right)^2\). Chứng minh rằng a và b là hai số đối nhau.
Bài 3: Chứng minh đẳng thức:
a) Cho \(2\left(a^2+b^2\right)=\left(a-b\right)^2\). Chứng minh rằng a; b là 2 số đối nhau.
b) Cho \(a^2+b^2+c^2+3=2\left(a+b+c\right).\) Chứng minh rằng a = b = c = 1
c) Cho \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right).\) Chứng minh rằng a = b = c
Bài 4: Cho các số a; b; c ko đồng thời = 0 (tức là có ít nhất một số khác 0). Chứng minh rằng có ít nhất một trong các biểu thức dưới đây có giá trị dương:
\(M=\left(a+b+c\right)^2-8ab\)
\(N=\left(a+b+c\right)^2-8bc\)
\(P=\left(a+b+c\right)^2-8ac\)
Cho a, b, c là ba số khác nhau, chứng minh rằng:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
Cho a,b,c là ba số khác nhau đôi một và \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
Chứng minh rằng : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
cho ba số a,b,c khác nhau:
a)tính \(\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(a-b\right)\left(b-c\right)}\)
b)chứng minh rằng
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\ge2\)
1.Cho a + b = -5 và ab = 6. Tính \(^{a^3-b^3}\)
2.Chứng minh rằng tổng lập phương của một số nguyên với 11 lần số đó là một số chia hết cho 6
3.Chứng minh rằng \(ab\left(a^2-b^2\right)\)chia hết cho cho 6 với mọi số nguyên a,b
4.Chứng minh biểu thức \(x^2-x+\frac{1}{3}>0\)với mọi số thực x
5.Cho \(a+b+c=0.\)Chứng minh rằng H=K biết rằng H=\(a\left(a+b\right)\left(a+c\right)và\)\(K=c\left(c+a\right)\left(c+b\right)\)
6. Với p là số nguyên tố, p>2. Chứng minh \(\left(p^3-p\right)\)chia hết cho 24
Chứng minh rằng \(\left(a+b+c\right)^2-\dfrac{3}{4}\left[\left(b-c\right)^2+\left(c-a\right)^2+\left(a-b^2\right)\right]>3\)
với a,b,c là các số thực
Đề có sai ko mọi ngừi
Cho a,b,c khác nhau. Chứng minh rằng \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
Cho a,b,c,d là các số thực. Chứng minh rằng:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)