Cho I = ∫ 1 2 x + ln x x + 1 2 dx = a b ln 2 - 1 c với a, b, c là các số nguyên dương và các phân số là phân số tối giản.
Tính giá trị của biểu thức S = a + b c .
A. .
B. .
C. .
D. .
Tính các nguyên hàm.
a)\(\int\dfrac{2dx}{x^2-5x}=A\ln\left|x\right|+B\ln\left|x-5\right|+C\) . Tìm 2A-3B.
b)\(\int\dfrac{x^3-1}{x+1}\)dx=\(Ax^3-Bx^2+x+E\ln\left|x+1\right|+C\).Tính A-B+E
Xét hàm số y = f(x) liên tục trên miền D = [a;b] có đồ thị là một đường cong C. Gọi S là phần giới hạn bởi C và các đường thẳng x = a; x = b Người ta chứng minh được rằng độ dài đường cong S bằng ∫ a b 1 + ( f ' ( x ) ) 2 d x Theo kết quả trên, độ dài đường cong S là phần đồ thị của hàm số f(x) = ln x và bị giới hạn bởi các đường thẳng x = 1 ; x = 3 là m - m + ln 1 + m n với m , n ∈ R thì giá trị của m 2 - m n + n 2 là bao nhiêu?
A. 6
B. 7
C. 3
D. 1
Cho vật thể H nằm giữa hai mặt phẳng x = 0; x = 1 . Biết rằng thiết diện của vật thể H cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x là một tam giác đều có cạnh là ln ( 1 + x ) 4 . Giả sử thể tích V của vật thể có kết quả là V = a b ( c ln 2 - 1 ) với a, b, c là các số nguyên. Tính tổng S = a 2 - a b + c
A. 6
B. 8
C. 7
D. 9
Giải các bất phương trình sau:
a) (2x − 7)ln(x + 1) > 0;
b) (x − 5)(logx + 1) < 0;
c) 2 log 3 2 x + 5 log 2 2 x + log 2 x – 2 ≥ 0
d) ln(3 e x − 2) ≤ 2x
Cho vật thể H nằm giữa hai mặt phẳng x=0;x=1. Biết rằng thiết diện của vật thể H cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x( 0 ≤ x ≤ 1 ) là một tam giác đều có cạnh là 4 ln ( 1 + x ) Giả sử thể tích V của vật thể có kết quả là V = a b ( c ln 2 - 1 ) với a, b, c là các số nguyên. Tính tổng S= a 2 - a b + c
Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số f x = 1 1 + sinx
a) F(x) = 1 - cos x 2 + π 4
b) G(x) = 2 tan x 2
c) H(x) = ln(1 + sinx)
d) K(x) = 2 1 - 1 1 + tan x 2
Cho hàm số y = ln ( 2 x - a ) - 2 m ln ( 2 x - a ) + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 ( x 2 + a 2 ) + log 2 ( x 2 + a 2 ) + log 2 ( x 2 + a 2 ) + . . . + log . . . 2 ( x 2 + a 2 ) - ( 2 n + 1 - 1 ) ( log 2 x a + 1 ) = 0
(với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thoả mãn m a x [ 1 ; e 2 ] y = 1 . Số phần tử của S là
A. 0
B. 1
C. 2
D. Vô số
Biết rằng ∫ 1 2 ln ( x + 1 ) d x = a ln 3 + b ln 2 + c với a,b,c là các số nguyên. Tính S = a + b + c .
A. S=1
B. S=0
C. S=2
D. S=-2