Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ
sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)
giải
Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:
\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)
\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)
Áp dụng bđt bunhiacopxki ta có:
\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)
Mà \(x,y,z\)nguyên dương
\(\Rightarrow x+y+z\le3\)
\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)
Lấy (1) + (2) ta được:
\(M\ge2+2+2+\frac{1}{3}\)
\(\Rightarrow M\ge\frac{19}{3}\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z\)
Lê Tài Bảo Châu Đề bài ko sai.
\(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
Theo ĐL Cool Kid đz luôn có \(\frac{1}{a+b+c}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow M\ge x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow M\ge x+y+z+\frac{8}{9x}+\frac{8}{9y}+\frac{8}{9z}\)
Có BĐT :\(x+\frac{8}{9x}\ge\frac{x^2+33}{18}\Leftrightarrow.......\Leftrightarrow\left(x-1\right)^2\left(16-x\right)\ge0\left(true\right)\)
Tương tự cộng vế theo vế thì \(M\ge\frac{x^2+y^2+z^2+99}{18}=\frac{17}{3}\)
Dấu "=" xảy ra tại \(x=y=z=1\)