Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoài Thu Vũ

Cho ba số thực a, b, c. Chứng minh rằng:\(\left(a^2-bc\right)^3+\left(b^2-ca\right)^3+\left(c^2-ab\right)^3\ge3\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\)

Võ Việt Hoàng
24 tháng 7 2023 lúc 16:14

Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)

\(\Rightarrow x+y+z\ge0\)

\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)

Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)

=> Đẳng thức (1) luôn đúng với mọi x

Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)

và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)


Các câu hỏi tương tự
Nguyễn Xuân Đình Lực
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Lâm Ngọc
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Kurosaki Akatsu
Xem chi tiết
Lizy
Xem chi tiết
Nguyễn Anh Tuấn
Xem chi tiết
Nhóc vậy
Xem chi tiết