Cho 3 số thực dương a;b;c thỏa mãn: \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\)và \(\left(abc\right)^2=1\)
Tìm Max của biểu thức: \(S=\frac{2.\sqrt[3]{3}}{a^6+b^6+3a^4b^4c^4}+\frac{3.\sqrt[3]{3}}{b^6+c^6+3a^4b^4c^4}+\frac{4.\sqrt[3]{3}}{c^6+a^6+3a^4b^4c^4}\)?
B1: cho a+b+c=0 và a^2+b^2+c^2=1. Tính GTBT P=a^4+b^4+c^4
B2: CMR không có các số x,y thỏa mãn hằng đẳng thức
a)2x^2+y^2-2xy+x+2=0
b)-x^2-26y^2+10xy-20y-150=0
giúp tui với ạ tui sắp phải nộp bài :<
Bài 1Cho 3 số hữu tỉ a,b,c thỏa man abc=1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\)
CMR trong 3 số a,b,c có 1 số bằng bình phương số còn lại
Bài 2 Cho a,b,c là các số khác 0 thỏa mãn \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Tính giá trị biểu thức \(P=\left(1+\frac{1}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
với a,b,c thuộc R thỏa mãn : (3a+3b+3c)^3=24+(3a+b-c)^3+(3b+c-a)^3+(3c+a-b)^3
CMR : (1+2a)(1+2b)(1+2c)=1
cho các số a;b;c;d thỏa mãn 3a+2b-d-c=1; 2a+2b-c+2d=2; 4a+2b-3c+d=3; 8a+b-6c+d=4
Tính a+b+c+d=...
(Các bạn giải gấp giùm mình nha)
cho các số a, b, c, d thỏa mãn 3a +2b -c -d=1; 2a+2b-c+2d=2; 4a- 2b- 3c+d=3; 8a+b-6c+d=4. tính giá trị của a+b+c+d
Với các số dương a, b, c thỏa mãn a+b+c=3abc, chứng minh rằng:
\(a^4b^4+b^4c^4+c^4a^4>=3a^4b^4c^4\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^5}{bc^2}+\frac{b^5}{ca^2}+\frac{c^5}{ab^2}>=a^2+b^2+c^2\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}>=\frac{1}{9}\left(a+b+c\right)\)
1. Cho a,b,c,d dương thỏa mãn; a4 +b4 +c4 +d4 =4abcd
Tính M= a2006 +b2007 -c2006 -d2007
2. Cho a,b thỏa mãn a3 +2b2 -4b+3=0 và a2 +a2b2 -2b=0
Tính P=a2 +b2
3.Cho a2 +a +1=0. Tính
P= a2008 + (1/a2008)
4.Cho các số x,y,z thỏa mãn điều kiện: x+y+z=1 và x3 +y3 +z3 =1.
Tính A= x2007 +y2007 +z2007.
5.cho a,b,c là 3 số đôi một khác nhau thỏa mãn:
a+(1/b)= b+(1/c)= c+(1/a)
Tính P=abc
cho các số dương a,b,c thỏa mãn
abc=ab+bc+ca
cmr: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+2c+b}< \frac{3}{16}\)
bài 3 : với a,b,c thuộc R thỏa mãn : (3a+3b+3c)^3 =24+(3a+b-c)+(3b+c-a)^3 +(3c+a-b)^3
CM : (a+2b)(b+2c)(c+2a)=1
bài 4 : CM với n là số nguyên dương thì : 5^n(5^n+3^n)-2^n(9^n+11^n) chia hết cho 21