Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đan Linh

cho ba số a,b,c khác 0 thoả mãn a^2+b^2+c^2=(a+b+c)^2 Tính giá trị biểu thức p=b+c/a+a+c/b+a+b/c

Khôi Bùi
8 tháng 4 2022 lúc 0:24

ĐK : a;b;c khác 0 

Thấy : \(a^2+b^2+c^2=\left(a+b+c\right)^2\Leftrightarrow ab+bc+ac=0\) (1)

Ta có : \(P=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)

Từ (1) suy ra : \(\left(b+c\right)a=-bc\Leftrightarrow\dfrac{b+c}{a}=\dfrac{-bc}{a^2}\)   

CMTT ; ta có : \(\dfrac{c+a}{b}=\dfrac{-ac}{b^2};\dfrac{a+b}{c}=\dfrac{-ab}{c^2}\)

Suy ra : \(P=-\left(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ac}{b^2}\right)=-\dfrac{a^3b^3+b^3c^3+a^3c^3}{a^2b^2c^2}\)  (2) 

Đặt : ab = x ; bc = y ; ac = z ; ta có : x + y + z = 0 \(\Rightarrow x^3+y^3+z^3=3xyz\)  (3)

Từ (2) và (3) suy ra : \(P=-\dfrac{3xyz}{xyz}=-3\)

Vậy ... 


Các câu hỏi tương tự
Hoang Kim Thanh
Xem chi tiết
Nguyễn Song Hào
Xem chi tiết
YEkezg
Xem chi tiết
BiBo MoMo
Xem chi tiết
doremon
Xem chi tiết
Vu Quang Huy
Xem chi tiết
Đan Linh
Xem chi tiết
Huế Nguyễn Thị Thu
Xem chi tiết
Lê Quang Khải
Xem chi tiết