Bạn hỏi bài dành cho con nít thì đúng hơn! :D
Bài này áp dụng t/c dãy tỉ số bằng nhau hk ở lớp 6 rồi!
Xét trường hợp a+b+c=0 và a+b+c/=0 là được!
Bạn hỏi bài dành cho con nít thì đúng hơn! :D
Bài này áp dụng t/c dãy tỉ số bằng nhau hk ở lớp 6 rồi!
Xét trường hợp a+b+c=0 và a+b+c/=0 là được!
Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : \(\frac{a+b-c}{c} =\frac{a+c-b}{b} =\frac{c+b-a}{c} \)
Tính : \(P = \frac{(a+b)(b+c)(a+c)}{abc} \)
1.Chứng minh rằng: \(x^5+y^5\ge x^4y+xy^4\)với \(x,y\ne0;x+y\ge0\)
2.Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)
Tính : \(P=\frac{\left(a+b\right)\left(b+a\right)\left(a+c\right)}{abc}\)
Các thánh lại giải bài này đi!!!
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)<2
2. Chứng minh rằng : x5 + y5 ≥ x4y + xy4 với x, y ≠ 0 và x + y ≥ 0
3. Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{c}\)
Tính : \(P=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
4. Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc.
Tính giá trị của biểu thức.
Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)Cho ba số a, b, c khác 0 thỏa nãm đẳng thức :Tính : P =
tính giá trị của biểu thức.
Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)Cho ba số a, b, c khác 0 thỏa nãm đẳng thức :Tính: \(P=\frac{\left(a+b\right).\left(b+c\right).\left(a+c\right)}{abc}\)
Cho ba số a,b,c khác 0 thoả mãn đẳng thức :
\(\frac{a+b+c}{c}=\frac{a+b-c}{b}=\frac{c+b-a}{a}\)
Tính :
\(P=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
Cho 3 số a,b,c khác 0 thỏa mãn đẳng thức: \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{c}\)
Tính : \(P=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
Cho 3 số a,b,c khác 0 thoả mãn đẳng thức :
\(\frac{a+b+c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{c}\)
Tính : \(P=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
cho 3 số a,b,c khác 0 và đôi một khác nhay và thỏa mãn a+b+c=0. tính giá trị biểu thức P= \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)