Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình sau:
\(\left\{{}\begin{matrix}2x+1=x+2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-x=2-1\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Để (d1),(d2),(d3) đồng quy thì (d3) đi qua A(1;3)
Thay x=1 và y=3 vào (d3), ta được:
\(m^2+1+m=3\)
=>\(m^2+m-2=0\)
=>\(m^2+2m-m-2=0\)
=>\(\left(m+2\right)\left(m-1\right)=0\)
=>\(\left[{}\begin{matrix}m+2=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=1\end{matrix}\right.\)