Vì B nằm giữa A và C nên A B → = k A C → cùng hướng và AB < AC nên 0 < k < 1.
Chọn C.
Vì B nằm giữa A và C nên A B → = k A C → cùng hướng và AB < AC nên 0 < k < 1.
Chọn C.
Cho ba điểm phân biệt A, B, C sao cho A B → = k A C → . Để A nằm giữa B và C thì k thỏa mãn điều kiện nào sau đây?
A. k = 1
B. k < 0
C. 0 < k < 1
D. k > 1
tìm tập hợp điểm M thỏa mãn hệ thức
2
−−→
M
A
+
k
−−→
M
B
+
(
1
−
k
)
−−→
M
C
=
→
0
, k ∈ R
Cho hai điểm phân biệt A, B cố định và số thực k > 0. I là trung điểm của AB. Tập hợp các điểm M sao cho M A → + M B → = k là:
A. Đường thẳng AB
B. Đường tròn tâm I, bán kính k/2
C. Đường tròn tâm I, bán kính k
D. Đường tròn tâm I, bán kính 2k
Cho ba điểm A, B, C phân biệt. Điều kiện cần và đủ để ba điểm A, B, C thẳng hàng và A nằm giữa B, C là:
A. ∃ k < 0 : A B → = k A C →
B. ∃ k ≠ 0 : A B → = k A C →
C. AB = AC
D. A B → = A C →
Cho 2 điểm A(3, -5), B(1, 0)
a) Tìm tọa độ điểm C sao cho : OC=-3AB
b) Tìm điểm D đối xứng của A qua C
c) Tìm điểm M chia đoạn AB theo tỉ số k=(-3)
Câu 1: Cho 2 điểm A,B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2.vectoMA+vectoMB\right|=\left|vectoMA+2.vectoMB\right|\)là:
A. đường trung trực của đoạn AB
B. đường tròn đường kính AB
C. đường trung trực đoạn thẳng IA
D. đường tròn tâm A, bán kính AB
Câu 2: cho tam giác ABC đều cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left|3.vectoMA+3.vectoMB+4.vectoMC\right|=\left|vectoMB-vectoMA\right|\)là đường tròn cố định có bán kính R. Tính bán kính R theo a.
A. R = a/3
B. R = a/9
C. R = a/2
D. R = a/6
Câu 3: Cho hình chữ nhật ABCD và số thực K>0. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|vectoMA+vectoMB+vectoMC+vectoMD\right|=k\)là:
A. một đoạn thẳng
B. một đường thẳng
C. một đường tròn
D. một điểm
Câu 4:Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn \(\left|vectoMA+vectoMB+vectoMC\right|=3\)?
A.1
B.2
C.3
D. vô số
Trên đường tròn lượng giác cho điểm M xác định bởi số đo AM = α, π/2 < α < π, A(1; 0). Gọi M 2 là điểm đối xứng với M qua trục Ox. Số đo của cung A M 3 là
A. π - α + k2π, k ∈ Z B. α + π/2 + k2π, k ∈ Z
C. α - π + k2π, k ∈ Z D. -α + k2π, k ∈ Z
Trên đường tròn lượng giác cho điểm M xác định bởi số đo AM = α, π < α < 3π/2, A(1; 0). Gọi M 2 là điểm đối xứng với M qua trục Ox. Số đo của cung A M 2 là
A. α - π + k2π, k ∈ Z B. π - α + k2π, k ∈ Z
C. 2π - α + k2π, k ∈ Z D. 3π/2 - α + k2π, k ∈ Z
Tìm K lớn nhất để với mọi a,b,c khác 0, a+b+c=0, ta có:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{k}{\left|ab+bc+ca\right|}\)