Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
quam

Cho b² =ac;c² =bd .Chứng minh rằng a³+b³-c³/b³+c³-d³ =(a+b-c/b+c-d)³ giúp mình với

Nguyễn Văn A
13 tháng 3 2023 lúc 14:53

\(b^2=ca\Rightarrow\dfrac{b}{c}=\dfrac{a}{b}\) ; \(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\).

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\)

Áp dụng như trên ta được:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}\)

\(\Rightarrow\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\dfrac{a^3+b^3-c^3}{b^3+d^3-d^3}\)

(tất nhiên để áp dụng như trên thì a,b,c,d phải khác 0).

 


Các câu hỏi tương tự
Nguyễn Ngọc Diệp
Xem chi tiết
Bích Ngọc
Xem chi tiết
holicuoi
Xem chi tiết
Nguyễn Phạm Linh Chi
Xem chi tiết
hoang thi bao ngoc
Xem chi tiết
Dũng Nguyễn Xuân
Xem chi tiết
vu minh hang
Xem chi tiết
Bảo Lam Nguyễn
Xem chi tiết
Đức fireshock
Xem chi tiết