a/ ĐKXĐ: \(\hept{\begin{cases}x-2\ge0\\\sqrt{x-2}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\x-2\ne1\end{cases}\Rightarrow}\hept{\begin{cases}x\ge2\\x\ne3\end{cases}}}\)
b/ \(A=\frac{\sqrt{x-2-2\sqrt{x-2}+1}}{\sqrt{x-2}-1}=\frac{\sqrt{\left(\sqrt{x-2}-1\right)^2}}{\sqrt{x-2}-1}=\frac{\left|\sqrt{x-2}-1\right|}{\sqrt{x-2}-1}\left(1\right)\)
+ Khi \(\sqrt{x-2}-1>0\Rightarrow x-2>1\Rightarrow x>3\) thì (1) trở thành:
\(A=\frac{\sqrt{x-2}-1}{\sqrt{x-2}-1}=1\)
+ Khi \(\sqrt{x-2}-1< 0\Rightarrow x< 3\) thì (1) trở thành:
\(A=\frac{1-\sqrt{x-2}}{\sqrt{x-2}-1}=-1\)
Vậy A = 1 khi x > 3
A = -1 khi \(2\le x< 3\)