Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tiểu

Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2015^2}\)

Chứng minh rằng A<1

Trần Thanh Phương
14 tháng 2 2019 lúc 18:15

Vì \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};...;\frac{1}{2015^2}< \frac{1}{2014\cdot2015}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2014\cdot2015}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}< 1\)

Vậy \(A< 1\left(đpcm\right)\)

tth_new
14 tháng 2 2019 lúc 18:16

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2015^2}< \frac{1}{2014.2015}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}< 1^{\left(đpcm\right)}\)


Các câu hỏi tương tự
Phạm Thị Hải Minh
Xem chi tiết
Đông joker
Xem chi tiết
lucy
Xem chi tiết
Carthrine
Xem chi tiết
Kaitoru
Xem chi tiết
Phạm Nam Khánh
Xem chi tiết
Dương Ngọc Hà
Xem chi tiết
Huy Anh
Xem chi tiết
Nguyen Thanh Long
Xem chi tiết