a) \(a^2+b^2-2ab\ge0\)
b) \(\frac{a^2+b^2}{2}\ge ab\)
c) \(a\left(a+2\right)< \left(a+1\right)^2\)
d) \(m^2+n^2+2\ge2\left(m+n\right)\)
e) \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\left(a>0,b>0\right)\)
Giúp mình giải bài này nhé
Cho a, b, c là các số thực dương,chứng minh rằng:
\(\frac{a^2+bc}{\left(b+c\right)^2}+\frac{b^2+ca}{\left(c+a\right)^2}+\frac{c^2+ab}{\left(a+b\right)^2}\ge\frac{3}{2}\)
Đăng làm cảnh ạ!:v Em đùa tí,để mọi người có thể ăn điểm :)) em tặng 9-18 điểm luôn! :D Với đk giải đầy đủ :v
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).
Cho \(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right);B=\frac{2}{\left(x+y\right)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}\right);C=\frac{2}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)\)
a) Tính B+C
b) Tính A+B+C
P/s: Nhờ mọi người giúp e bài này vs ah! e cần gấp
thanks all:333
Tìm nhiều cách chứng minh BĐT sau đây với a, b, c không âm? Liệu có thể không? (Không dùng Dirichlet)
Chứng minh: \(F=2\left(a^2+b^2+c^2\right)+abc+8-5\left(a+b+c\right)\ge0\)
Em chỉ mới tìm ra một cách mà không biết đúng hay sai nữa
Đặt \(A=\frac{1}{8}\left(4a+bc-5\right)^2+\frac{\left(2c+7\right)\left(c-1\right)^2}{c+4}\)
\(B=\frac{1}{8}\left(4a+4b-5\right)^2+2\left(c-\frac{5}{4}\right)^2+\frac{7}{4}\)
----------------------------------------------------------------------
Ta có các đẳng thức:
\(F=A-\frac{1}{8}\left(c-4\right)\left(4+c\right)\left(b-\frac{5}{4+c}\right)^2\)
\(F=B+ab\left(c-4\right)\)
\(\Rightarrow F=\frac{ab.A+\frac{1}{8}\left(4+c\right)\left(b-\frac{5}{4+c}\right)^2.B}{ab+\frac{1}{8}\left(4+c\right)\left(b-\frac{5}{4+c}\right)^2}\ge0\)
Mong mọi người tìm thêm các cách khác hay hơn ạ!
Một bài rất easy để dùng sos đây ạ!
1/Cho a, b, c > 0. Chứng minh rằng:\(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
Để ý rằng theo Bunhiacopxki ta có: \(\left(1+1+1\right)\left(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(c+a\right)^2}\right)\ge\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\right)^2=VT^2\)
Suy ra \(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\) (do các hai vế đều dương)
Như vậy chúng ta sẽ được một bài toán rộng hơn bài trên,nhưng chắc hẳn rằng khi làm xong bài trên các bạn có thể giải ngay bài này chỉ qua biến đổi bđt đơn giản như trên! :D
Bài toán 2: \(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
a) A= \(\left(a+b+c\right)^3+\left(a-b+c\right)^3-6a\left(b+c\right)^2\)
b) B= \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
c) C= \(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
d) D= \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)
e) E= \(\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a^2+1\right)^2\)
1, Chứng minh đẳng thức \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
2, Cho tam giác ABC có AM và AD lần lượt là các đường trung tuyến và phân giác. Đường thẳng qua M và song song với AB cắt AD tại E. Đường thẳng qua D và song song với AC cắt AM tại F. Chứng minh
a. Góc AEC = 90 độ
b. E, F, C thẳng hàng
Chứng minh rằng:
a, \(a^2+b^2+c^2+3\ge2\left(a+b+c\right);\forall a,b,c\)
b,\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right);\forall a,b,c,d\)
c, \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right);\forall a,b,c,d,e\)
d, \(a^2+b^2+c^2+d^2+ab+cd\ge6;\forall a,b,c,d>0\)và \(abcd=1\)