Dễ có các bất đẳng thức sau: (chứng minh bằng cách chuyển vế và phân tích...)
\(\frac{a^2}{2}+b^2\ge\sqrt{2}ab\)
\(b^2+\frac{c^2}{2}\ge\sqrt{2}bc\)
\(\frac{c^2}{2}+d^2\ge\sqrt{2}cd\)
\(d^2+\frac{a^2}{2}\ge\sqrt{2}da\)
Cộng lại là xong.
Hoặc SOS cho nó:
\(VT-VP=\frac{1}{4}\left[2\left(a-c\right)^2+\left(a+c-2\sqrt{2}b\right)^2+\left(a+c-2\sqrt{2}d\right)^2\right]\)
Hoặc kinh khủng hơn:
\(4\left(a^2+b^2\right)\left(VT-VP\right)=2\left(a^2+b^2\right)\left(a-c\right)^2+\left(a^2-ab+ac-2\sqrt{2}ad+2\sqrt{2}b^2-bc\right)^2+\left(a^2+ac+\left(1-2\sqrt{2}\right)ab+bc-2\sqrt{2}bd\right)^2\)
\(\ge0\)