Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trịnh Quỳnh Nhi

Cho a,b,c,d là các số nguyên thoả mãn a3+b3=2.(c3-8d3). Chứng minh rằng: a+b+c+d chia hết cho 3

Nguyễn Anh Quân
17 tháng 12 2017 lúc 9:55

<=> a^3+b^3+c^3+d^3 = 3c^3-15d^3 = 3.(c^3-5d^3) chia hết cho 3

Xét a^3-a = a.(a^2-a)=(a-1).a.(a+1)

Ta thấy a-1;a;a+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 3 => a^3-a = (a-1).a.(a+1) chia hết cho 3

Tương tự : b^3-b;c^3-c;d^3-d đều chia hết cho 3

=> a^3+b^3+c^3+d^3-(a+b+c+d) chia hết cho 3

Mà a^3+b^3+c^3+d^3 chia hết cho 3 => a+b+c+d chia hết cho 3

=> ĐPCM

k mk nha

<=> a^3+b^3+c^3+d^3 = 3c^3-15d^3 = 3.(c^3-5d^3) chia hết cho 3
Xét a^3-a = a.(a^2-a)=(a-1).a.(a+1)
Ta thấy a-1;a;a+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 3 => a^3-a = (a-1).a.(a+1) chia hết cho 3
Tương tự : b^3-b;c^3-c;d^3-d đều chia hết cho 3
=> a^3+b^3+c^3+d^3-(a+b+c+d) chia hết cho 3
Mà a^3+b^3+c^3+d^3 chia hết cho 3 => a+b+c+d chia hết cho 3
=> ĐPCM

mk nha

:D

phạm văn tuấn
11 tháng 4 2018 lúc 18:45

<=> a^3+b^3+c^3+d^3 = 3c^3-15d^3 = 3.(c^3-5d^3) chia hết cho 3

Xét a^3-a = a.(a^2-a)=(a-1).a.(a+1)

Ta thấy a-1;a;a+1 là 2 số nguyên liên tiếp nên có 1 số chia hết cho 3 => a^3-a = (a-1).a.(a+1) chia hết cho 3

Tương tự : b^3-b;c^3-c;d^3-d đều chia hết cho 3

=> a^3+b^3+c^3+d^3-(a+b+c+d) chia hết cho 3

Mà a^3+b^3+c^3+d^3 chia hết cho 3 => a+b+c+d chia hết cho 3

=> ĐPCM

k mk nha

Trương Hoàng Quân
11 tháng 5 2018 lúc 21:19

Sai rồi!!!!!!!!!!!!!!!!!!!!!!!!!!!

Chỗ a3-a=a(a2-a) phải là a3=a(a2-1) rồi ta có a2-1=(a-1)(a+1)

giải thích:(a+1)(a-1)=(a-1)a+a-1=a2-a+a+1=a2-1  ( :D)


Các câu hỏi tương tự
ILoveMath
Xem chi tiết
TrịnhAnhKiệt
Xem chi tiết
Treallagx
Xem chi tiết
Thư Anh Nguyễn
Xem chi tiết
Treallagx
Xem chi tiết
Phạm Thị Hải Minh
Xem chi tiết
Minz Ank
Xem chi tiết
nhóc hỏi bài
Xem chi tiết
Zz Victor_Quỳnh_Lê zZ
Xem chi tiết