\(a^2+c^2=b^2+d^2\Leftrightarrow2\left(a^2+c^2\right)=a^2+b^2+c^2+d^2\)
\(2\left(a^2+c^2\right)⋮2\Rightarrow a^2+b^2+c^2+d^2⋮2\)
Xét: \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)⋮2\) (tích 2 số nguyên liên tiếp thì chia hết cho 2)
\(\Rightarrow a+b+c+d⋮2;a+b+c+d>2\left(a;b;c;d\in N>0\right)\)
\(\Rightarrow a+b+c+d\) là hợp số (đpcm)