Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Nguyễn Hiền Thảo

Cho a+b+c=3

Tính S=\(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

 

Dark Killer
5 tháng 8 2016 lúc 10:14

Đầu tiên bạn hãy tự phân tích tử số nha, kết quả là:

    \(a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

Ta có: \(a+b+c=3\)

Vậy thay vào biểu thức, ta sẽ được:

    \(S=\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(\Leftrightarrow S=\frac{\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

\(\Leftrightarrow S=\frac{1}{2}\left(a+b+c\right)\)

\(\Leftrightarrow S=\frac{1}{2}.3\)

\(\Leftrightarrow S=\frac{3}{2}\)

Chúc bạn học giỏi và tíck cho mìk vs nha Đỗ Nguyễn Hiền Thảo!


Các câu hỏi tương tự
Cáo Nô
Xem chi tiết
Cô Gái Mùa Đông
Xem chi tiết
Mai Ngoc
Xem chi tiết
Trần Văn Thanh
Xem chi tiết
Zi Heo
Xem chi tiết
Doraemon
Xem chi tiết
Doraemon
Xem chi tiết
Đỗ Huyền My
Xem chi tiết
tth_new
Xem chi tiết