Dùng bđt Bunhiacopxki
\(\left[a^2+\left(\sqrt{2}b\right)^2+\left(\sqrt{3}c\right)^2\right]\left[1+\left(\frac{1}{\sqrt{2}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2\right]\ge\left(a+b+c\right)^2=2016^2\)
\(\Rightarrow S\ge\frac{2016^2}{\frac{11}{6}}=\frac{2016^2.6}{11}\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}\frac{a}{1}=\frac{\sqrt{2}b}{\frac{1}{\sqrt{2}}}=\frac{\sqrt{3}c}{\frac{1}{\sqrt{3}}}\\a+b+c=2016\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2b=3c\\a+b+c=2016\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{12096}{11}\\b=\frac{6048}{11}\\c=\frac{4032}{11}\end{cases}}\)