\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{7}\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{1}{7}\left(a+b+c\right)\) (nhân a + b +c vào mỗi vế)
\(\Rightarrow3+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2009}{7}\)
Suy ra \(S=\frac{2009}{7}-3=284\)