Vì \(a,b,c>0\) nên theo BĐT Svacxo ta có :
\(A=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2.\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy \(A_{min}=\frac{3}{2}\)khi \(a=b=c=1\)