Mr Lazy sai chỗ dấu "=" rồi nha! a + b + c = 3 thì sao lại ghi : "Dấu "=" xảy ra khi a=b=c=3" được???
Giải
Cách 1: Áp dụng BĐT Cauchy-schwarz,ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{3}=3^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c =1
Cách 2: Theo BĐT cô si,ta có:
\(a+b+c\ge3\sqrt[3]{abc}\) (1)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\) (2)
Nhân theo vế của (1) và (2),ta được: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c =1
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi a = b = c = 4-1 = 3.