cho a,b,c>0 thoả mãn a+b+c=1
chứng minh rằng √(a+bc) +√(b+ca) +√(c+ab)≥1+√bc+√ca+√ab
cho a,b,c là ba số dương thõa mãn điều kiện ab+bc+ca=1
Chứng minh rằng a/√1-a2+b/√1-b2+c/√1-c2 ≤ 3/2
cho 3 số dương a, b, c thoả mãn ab+bc+ca=1. chứng minh rằng 1/ab + 1/bc + 1/ca >=3+ √(1/a²)+1 +√(1/b²)+1 +√(1/c²)+1
cho a,b,c là các số thực dương thỏa mãn : abc=1
chứng minh: \(\dfrac{1}{ab+a}+\dfrac{1}{bc+b}+\dfrac{1}{ca+c}\ge\dfrac{3}{2}\)
cho a,b,c là số thực lớn hơn 0 , thoả mãn : ab + bc + ca + abc =< 4 ( nhỏ hơn hoặc bằng 4 )
chứng minh rằng a2 + b2 + c2 + a + b + c >= 2 ( ab + bc + ca )
Cho các số a,b,c thoả mãn a+b+c=7 ; ab+bc+ca=15. Chứng Minh rằng a=<11/3
a+b+c+ab+bc+ca+abc=0 , a,b,c thuộc R thoả mãn làm P xác định
P=1/(3+2a+b+ab) + 1/(3+2b+c+bc) + 1/(3+2c+a+ca).CMR:P=1
a+b+c+ab+bc+ca+abc=0 , a,b,c thuộc R thoả mãn làm P xác định
P=1/(3+2a+b+ab) + 1/(3+2b+c+bc) + 1/(3+2c+a+ca).CMR:P=1
cho a,b,c là 3 số dương thoả mãn 1/a + 1b + 1/c <=3 .chứng minh rằng a/(1+b^2) + b/(1+c^2) + c/(1+a^2) + 1/2(ab+bc+ca) >= 3