dùng bđt 1/x+1/y+1/z >/ 9/(x+y+z) với x,y,z>0
dùng bđt 1/x+1/y+1/z >/ 9/(x+y+z) với x,y,z>0
Cho a,b,c>=0; (a+b+c)=3. tìm giá trị nhỏ nhất của biểu thức B=1/(1+a)+1/(1+b)+1/(1+c)
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
c)Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
d) Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
Cho a, b, c >=0 ; a+b+c<=3. Tìm giá trị nhỏ nhất của biểu thức B=1/a+1 +
1/b+1 + 1/c+1
cho a,b,c>0 và a.b.c =1.Tìm giá trị nhỏ nhất của biểu thức :
P=(a+1).(b+1).(c+1)
Cho a, b,c >0 và a+b+c=3
a/ Chứng minh rằng : a/b+b/a>= 2
b/ Áp dụng : tìm giá trị nhỏ nhất của biểu thức P= 1/a+1/b+1/c
Cho a,b,c > 0 và a.b.c = 1.Tìm giá trị nhỏ nhất của biểu thức sau:
P = (a + 1)(b + 1)(c + 1)
Cho a, b, c > 0 và a.b.c = 1. Tìm giá trị nhỏ nhất của biểu thức sau: P = (a + 1)(b + 1)(c + 1)
Cho 2 biểu thức A = 3x+2/x và B = x^2+1/x^2−x − 2/x−1 với x≠0, 1.
a) Tính giá trị của biểu thức A khi x = 2/3.
b) Chứng minh B = x−1/x .
c) Đặt P = A: B. Tìm x nguyên để P có giá trị nguyên nhỏ nhất.
Cho 2 biểu thức A = 3x+2/x và B = x^2+1/x^2−x − 2/x−1 với x≠0, 1.
a) Tính giá trị của biểu thức A khi x = 2/3.
b) Chứng minh B = x−1/x .
c) Đặt P = A: B. Tìm x nguyên để P có giá trị nguyên nhỏ nhất.