\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Rightarrow1+2\left(ab+bc+ac\right)=0\)
\(\Rightarrow ab+bc+ac=-\frac{1}{2}\)
\(\Rightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2+2a^2bc+2ab^2c+2abc^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2+2ab\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2+2ab.0=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=\frac{1}{4}\)
Có: \(a^2+b^2+c^2=1\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=1\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=1\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=1\)
\(\Rightarrow a^4+b^4+c^4+2.\frac{1}{4}=1\)
\(\Rightarrow a^4+b^4+c^4+\frac{1}{2}=1\)
\(\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)
Mình làm kĩ nên hơi dài :)