a: BC=căn 5^2-3^2=4cm
b: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
c: Xét ΔDBK vuông tại B và ΔDEC vuông tại E có
DB=DE
góc BDK=góc EDC
=>ΔDBK=ΔDEC
=>DK=DC
=>ΔDKC cân tại D
a: BC=căn 5^2-3^2=4cm
b: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
c: Xét ΔDBK vuông tại B và ΔDEC vuông tại E có
DB=DE
góc BDK=góc EDC
=>ΔDBK=ΔDEC
=>DK=DC
=>ΔDKC cân tại D
cho \bigtriangleup ABC vuông tại B có AB=3cm , AC =5cm .
a) tính BC
b) vẽ đường phân giác AD và vẽ DE \bot AC .chứng minh : \bigtriangleup ABD =\bigtriangleup AED
c) kéo dài AB và ED cắt nhau tại K . chứng minh \bigtriangleup KDC cân
d) trên tia đối của tai KE lấy điểm F sao cho KF=BC . chứng minh : EB đi qua trung điểm của AF
cho tam giác ABC vuông tại B có AB = 3cm; AC = 5cm
a) Tính BC
b) Vẽ đường phân giác AD và DE vuông góc AC. Cm tam giác ABD = AED
c) Kéo dài AB và ED cắt nhau tại K. CM: tam giác KDC cân
d) Trên tia đối của tia KE lấy điểm F sao cho KF = BC. Cm: EB đi qua trung điểm của AF
Cho \(\Delta ABC\)vuông tại B.
a) Vẽ đường phân giác AD \(\left(D\in BC\right)\). Vẽ \(DE⊥AC\)\(\left(E\in AC\right)\). Chứng minh \(\Delta ABD=\Delta AED\)
b) Kéo dài AB và ED cắt nhau tại K. Chứng minh \(\Delta KDC\)cân
c) Trên tia đối cửa tia KE, lấy điểm F sao cho KF=BC. Chứng minh EB đi qua trung điểm KF
cho tam giác ABC vuông tại B , AB=3cm , AC=4,5 cm . Vẽ phân giác AD(D thuộc BC). từ D vẽ DE vông góc với AC(E thuộc AC). Gọi K là giao điểm của ED và AB
Chứng Minh
a)BD=ED
b) tam giác AKC cân
c) Trên tia đối của tia KE lấy điểm F sao cho KF =BC . cm EB đi qua trung điểm của AF
---------------------------------mọi người giúp em với----------------------------------------
không cần vẽ hình đâu ah
Cho tam giác ABC có AB=AC. Tia phân giác góc A cắt BC tại D .
a)Chứng minh tam giác ABD= tam giác ACD
b)Trên nửa mf bờ bc chứa ddiemr A vẽ tia Cx vuông góc với BC. Trên nửa mf bờ chứa điểm C vẽ tia Ay song song với BC. Chứng minh ^yAC=^ABC
c) Chứng minh AD song song với Cx
d)Gọi I là trung điểm AC, K là giảo điểm của 2 tia Ay và Cx. Chứng minh I là trung điểm của DK
Cho tam giác ABC có các góc đều nhọn và AB<AC. Phân giác góc A cắt bd tại D. Vẽ BE vuông góc với AD tại E. Tia BE cắt cạnh AC tại F
a) Chứng minh AB=AF
b) Qua điểm F vẽ đg thẳng song song với BC, cắt AE tại H. Lấy điểm K nằm giữa D và C sao cho FH=DK. Chứng minh DH=KF và DH song song với KF
c) Chứng minh góc ABC lớn hơn góc C
1.Cho tam giác ABC có AB=AC. Tia phân giác góc A cắt BC tại D .
a)Chứng minh tam giác ABD= tam giác ACD
b)Trên nửa mf bờ bc chứa ddiemr A vẽ tia Cx vuông góc với BC. Trên nửa mf bờ chứa điểm C vẽ tia Ay song song với BC. Chứng minh ^yAC=^ABC
c) Chứng minh AD song song với Cx
d)Gọi I là trung điểm AC, K là giảo điểm của 2 tia Ay và Cx. Chứng minh I là trung điểm của DK
2.Cho tam giác ABC có các góc đều nhọn và AB<AC. Phân giác góc A cắt bd tại D. Vẽ BE vuông góc với AD tại E. Tia BE cắt cạnh AC tại F
a) Chứng minh AB=AF
b) Qua điểm F vẽ đg thẳng song song với BC, cắt AE tại H. Lấy điểm K nằm giữa D và C sao cho FH=DK. Chứng minh DH=KF và DH song song với KF
c) Chứng minh góc ABC lớn hơn góc C
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC
2.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D.
a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC
b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.
c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.
3.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.
a.Chứng minh: ∆ABE = ∆MBE.
b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,
c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC
4
Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.
c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng
d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.
cho tam giác ABC có AB =6cm, AC=8cm, BC=10cm
a) chứng ninh tam giác ABC vuông tại A
b) vẽ tia phân giác BD của góc ABC ( D thuộc AC) từ D vẽ DE vuông BC (E thuộc BC) .Chứng minh DA=DE
c) kéo dài ED và BA cắt nhau tại F. Chứng minh DF>DE
d)trên tia đối của tia AB lấy điểm M sao cho AM=CH. chứng minh ba điểm D,M,H thẳng hàng
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH