(bn tự vẽ hình)Gọi AH giao EFtại M , AI giao EF tại N
a) xét tứ giác AEHF có: A=E=F=90o(góc)→AEHF là HCN→AM=EM=MH=MF
Ta có: ΔAHF~ΔACH(g.g)→AHF=ACH(góc) mà AHF =HAE (góc)(vì SLT do AE//HF)→ACH=HAE(góc)
Mà MA=ME(cmt)→ΔAME cân ở M→HAE=FEA(góc) do đó ACH=FEA(góc)
lại có BHE=ACH(góc)(đồng vị )→BHE=FEA(góc)
mặt khác:NAE=90o-FEA(ΔAEN vuông ở N) , B = 90o-BHE(ΔBHE vuông ở E )
→NAE=B(góc)→ΔAIB cân ở I → IB=IA
tương tự ta có :IA=IC
vậy IB=IC→I là trung điểm của BC
b) ta có : sABC=2sAEHF→SABC=4SAEF→\(\frac{SAEF}{SABC}=\frac{1}{4}\)mà ΔAEF~ΔACB(cmt)→\(\left(\frac{AF}{AB}\right)^2=\frac{1}{4}\)→\(\frac{AF}{AB}=\frac{1}{2}\)
→\(\frac{HE}{AB}=\frac{1}{2}\)(AF=HE)
→ΔAHB vuông ở H có đương cao HE=1/2 cạnh huyền→HE là đường trung tuyến của AB →ΔAHB vuông cân ở H→B=45o(góc)
→C=45o(góc)
vậy ΔABC vuông cân ở A
(câu b lm bừa nhé)