\(\widehat{BAD}+\widehat{ABD}+\widehat{ADB}=\widehat{CAD}+\widehat{ACD}+\widehat{ADC}\)
mà \(\widehat{BAD}=\widehat{CAD}\)
nên \(\widehat{ABD}+\widehat{ADB}=\widehat{ACD}+\widehat{ADC}\)
=>\(\widehat{ADB}+30^0+\widehat{C}=\widehat{ADC}+\widehat{C}\)
\(\Leftrightarrow\widehat{ADB}-\widehat{ADC}=-30^0\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)
nên \(\widehat{ADB}=\dfrac{180^0-30^0}{2}=75^0\)
=>\(\widehat{ADC}=105^0\)