Cho a,b,c thỏa mãn a+b+c = 2021 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{2021}\)
Tính Q = \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
cho a, b, c là các số nguyên dương thỏa mãn a+b+c=2021
cmr:A ko phải một số nguyên, bt A=\(\dfrac{a}{2021-c}+\dfrac{b}{2021-a}+\dfrac{c}{2021-b}\)
Cho a,b,c thỏa mãn :
\(\dfrac{1}{a+b+c}=\dfrac{a+4b-c}{c}=\dfrac{b+4c-a}{a}=\dfrac{c+4a-b}{b}\)
Tính: \(P=\left(2+\dfrac{a}{b}\right)\left(3+\dfrac{b}{c}\right)\left(4+\dfrac{c}{a}\right)\)
Ai giải giúp mik với mik đag cần
Bài 1:
a)So sánh \(\left(\dfrac{3}{4}\right)^{2021}+1với\dfrac{3}{4}+1\)
b)Cho x,y,z khác 0 thỏa mãn
\(\dfrac{2x-3}{5}=\dfrac{5y-2z}{3}=\dfrac{3z-5x}{2}\)
Tính GTBT: B=\(\dfrac{12x-5y-3z}{x-3y+2z}\)
cho 3 số a,b,c khác 0 thỏa mãn : \(\dfrac{2022a+b+c}{a}\) = \(\dfrac{a+2022b+c}{b}\) = \(\dfrac{a+b+2022c}{c}\) . tính giá trị của biểu thức P = \(\dfrac{a+b}{c}\) = \(\dfrac{b+c}{a}\) = \(\dfrac{a+c}{b}\)
cho 3 số a,b,c thoả mãn \(\dfrac{a}{2020}=\dfrac{b}{2021}=\dfrac{c}{2022}\)
Chứng minh rằng (a-c)3+8(a-b)2.(c-b)=0
Cho các số a, b, c ≠ 0 thỏa mãn: \(\dfrac{a+b}{c}\)=\(\dfrac{b+c}{a}\)=\(\dfrac{c+a}{b}\)
Tính A = \(\dfrac{a}{b+c}\)+\(\dfrac{a+b}{c}\) ( b+c≠0)
cho các số dương a,b,c thỏa mãn :
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
tính giá trị của biểu thức M =\(\dfrac{ab+bc+ca}{a^2+b^2+c^2}\)
Với a,b,c là độ dài 3 cạnh tam giác thỏa mãn 2c+b=abc. Chứng minh rằng :
\(\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\ge4\sqrt{3}\)