Cho các số thực dương a,b,c thỏa mãn abc =1 . Chứng minh rằng \(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\)
Đẳng thức xảy ra khi nào ?
Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1
Chứng minh rằng : \(\frac{1}{\sqrt{\left(a^2+ab+b^2\right)\left(b^2+bc+c^2\right)}}+\frac{1}{\sqrt{\left(b^2+bc+c^2\right)\left(c^2+ca+a^2\right)}}+\frac{1}{\sqrt{\left(c^2+ca+a^2\right)\left(a^2+ab+b^2\right)}}\ge4+\frac{8}{\sqrt{3}}\)
Cộng tác viên giúp với !
Cho a b c là các số thức dương thỏa mãn \(ab+bc+ca+abc\le4\)
Chứng minh rằng \(a^2+b^2+c^2+a+b+c\ge2\left(ab+bc+ca\right)\)
Cho a, b,c là các số thực dương thỏa mãn: \(ab+bc+ca=1.\)
Chứng minh rằng: \(\frac{1}{abc}+\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{9\sqrt{3}}{2}\)
Cho ba số thực dương a,b,c thỏa mãn . Chứng mình rằng:
\(\left(a+b+c\right)+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+\dfrac{8}{abc}\ge\dfrac{121}{12}\)
Những cách chứng minh hay?
Cho a, b, c >0 thỏa mãn ab + bc +ca = 3. Chứng minh: \(a+b+c\ge2+abc\)
Mình chỉ có 1 cách, SOS:
\(VT-VP=\frac{\left(abc+3\right)\Sigma\left(a-b\right)^2}{6\left(a+b+c+3\right)}+\frac{1}{18}\Sigma c^2\left(a-b\right)^2\ge0\)
Bạn có cách nào khác? (pqr cũng là một cách hay! Nhưng mình muốn có nhiều cách khác nữa!)
Cho a, b, c là 3 số thực dương thỏa mãn
\(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\left(abc\right)^2\)
Chứng minh rằng: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)=8\)
Giả sử a,b,c là các số thực dương thỏa mãn \(ab+bc+ca+abc\le4\). Chứng minh rằng:
\(a^2+b^2+c^2+a+b+c\ge2\left(ab+bc+ca\right)\)
Giả sử a , b, c là các số thực dương thỏa mãn ab + bc + ca + abc nhỏ hơn hoặc bằng 4. Chứng minh rằng: \(a^2+b^2+c^2+a+b+c\ge2\left(ab+bc+ca\right)^{ }\)