Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phước Duy Hồ

Cho ∆ABC ⊥ tại A (AB<AC), có Ah là đường cao. Kẻ HE ⊥ AB tại E, kẻ HF ⊥ AC tại F.

a) CM: tứ giác AEHF là hình chữ nhật
b) lấy điểm M đối xứng với điểm A qua F. CM tứ giác EFMH là hình bình hành
c) Từ điểm M kẻ đường thẳng song song AH, đường thẳng này cắt tia HF tại N. CM tứ giác AHMN là hình thoi

Kiều Vũ Linh
13 tháng 12 2023 lúc 8:30

loading... a) Do HE AB (gt)

⇒ ∠AEH = 90⁰

Do HF AC (gt)

⇒ ∠AFH = 90⁰

Do ABC vuông tại A (gt)

⇒ ∠FAE = 90⁰

Tứ giác AEHF có:

∠AFH = ∠AEH = ∠FAE = 90⁰

⇒ AEHF là hình chữ nhật

b) Do AEHF là hình chữ nhật (cmt)

⇒ AF // HE và AF = HE

⇒ FM // HE

Do M và A đối xứng nhau qua F

F là trung điểm của AM

⇒ FM = AF

Mà AF = HE (cmt)

⇒ FM = HE

Tứ giác EFMH có:

FM // HE (cmt)

FM = HE (cmt)

⇒ EFMH là hình bình hành

c) Do MN // AH (gt)

⇒ ∠NMF = ∠FAH (so le trong)

Xét hai tam giác vuông: ∆MNF và ∆AHF có:

FM = AF (cmt)

∠NMF = ∠FAH (cmt)

⇒ ∆MNF = ∆AHF (cạnh góc vuông - góc nhọn kề)

⇒ MN = AH (hai cạnh tương ứng)

Tứ giác AHMN có:

MN // AH (gt)

MN = AH (cmt)

⇒ AHMN là hình bình hành

Mà AM ⊥ HN (HF ⊥ AC)

⇒ AHMN là hình thoi


Các câu hỏi tương tự
hoangcuuthien
Xem chi tiết
Nhieen An
Xem chi tiết
Nguyễn Bảo Nam
Xem chi tiết
Tvyy
Xem chi tiết
Lưu Quốc Cường
Xem chi tiết
Hồ Hữu Duyy
Xem chi tiết
Cíu iem
Xem chi tiết
Lý Bá Đức Thịnh
Xem chi tiết
Bùi Minh Chính
Xem chi tiết