góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng với ΔACB
=>\(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AB}{AE}\right)^2=4\)
=>\(S_{ABC}=4\cdot S_{AEF}\)
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng với ΔACB
=>\(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AB}{AE}\right)^2=4\)
=>\(S_{ABC}=4\cdot S_{AEF}\)
Cho tam giác nhọn ABC , các đường cao BE và CF a, chứng minh tam giác AEB đồng dạng với tam giác AFC. Từ đó suy ra AF. AB=AE.AC b, chứng minh góc AEF=ABC c, nếu tam giác ABC có có góc A=60°. Chứng minh rằng SABC=4SAEF
Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh ΔAEB và ΔAFC đồng dạng. Từ đó suy ra: A F . A B = A E . A C
b) Chứng minh ∠ A E F = ∠ A B C
c) Cho A E = 3 c m , A B = 6 c m . Chứng minh rằng S A B C = 4 S A E F
d) Chứng minh A F F B . B D D C . C E E A = 1
Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại h
a) Chứng minh △AEB đồng dạng △AFC. Từ đó suy ra AF.AB=AE.AC
b) Chứng minh: góc AEF=góc ABC
c) Cho AE= 3cm, AB=6cm. Chứng minh rằng SABC= 4SAEF
Cho tam giác nhọn ABC, các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh tam giác AEB đồng dạng với tam giác AFC. Từ đó suy ra AF.AB=AE.AC
b) Chứng minh: góc AEF= góc ABC
c) Cho AE=3cm, AB=6cm. Chứng minh rằng Sabc=4Saef.
làm hộ mình cám ơn các bạn nhiều
Cho tam giác nhọn ABC các đường cao AD, BE, CF cắt nhau đang cần gấp tại H a/Chứng minh tam giác AEB đồng dạng với TAM GIAC AFC. Từ đó suy ra AF.AB = AE. AC b/Cho AE=3cm, AB=6cm. Chứng minh rằng SABc =4SAEF.
Cho tam giác nhọn ABC, các đường cao AD, BE, CF
a. Chứng minh đồng dạng với .
b. Chứng minh AF.AB = AE. AC
c. Chứng minh: ΔAEF = ΔABC
d. Cho AE = 3cm, AB= 6cm. Chứng minh rằng SABC = 4SAEF
Bài 6: Cho hình thang cân ABCD ( AB//CD) có ˆ
70oD
a) Tính số đo các góc ˆ
; ˆˆ
;BCA
b) Kẻ đường cao AH và BK của hình thang. Chứng minh DH = CK
Bài 7: Cho tam giác ABC cân tại A. kẻ phân giác BE, CF của các góc B và C.
a) Chứng minh tam giác AEF cân
b) Chứng minh ∆ BFC = ∆CEB
c) Chứng minh BFEC là hình thang cân
Bài 8: Cho MNK cân tại M có đường phân giác MH. Gọi I là một điểm nằm giữa M và H. Tia KI cắt MN tại
A, tia NI cắt MK tại B.
a. Chứng minh ABKN là hình thang cân.
b. Chứng minh MI vừa là đường trung trực của AB vừa là đường trung trực của KN.
Bài 1
Cho tam giác ABC, có 3 góc nhọn. các đường cao AD,BE,CF cắt nhau tại H. Chứng minh
a/ HF . HC=HE . HB
b/tam giác AEF ~ tam giác ABC
c/ chứng minh H là giao điểm các đường phân giác trong của tam giác ABC
bài 2
cho tam giác SBC nhọn, có O là giao điểm hai đường cao BE và CF
a/chứng minh tam giác OFB ~ tam giác OEC và
tam giác SEB ~ tam giác SFC và suy ra OB . OE=OC . OF và SF . SB=SE . SC
b/ chứng minh tam giác SEO ~ tam giác BEC
Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H chứng minh:
A, tam giác ABE vuông góc với tâm giác ACF
B, AEF = ABC