Diệp Nguyễn Thị Huyền

Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng:

\(\frac{a}{2b+3c}+\frac{b}{2c+3a}+\frac{c}{3b+2a}\ge\frac{3}{5}\)

Edogawa Conan
5 tháng 7 2021 lúc 9:28

Ta có:

A = \(\frac{a}{2b+3c}+\frac{b}{2c+3a}+\frac{c}{3b+2a}=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{3bc+2ac}\)

\(\ge\frac{\left(a+b+c\right)^2}{2ab+3ac+2bc+3ab+3bc+2ac}\)(bđt svacxo \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\))

\(\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ac\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{5\left(a+b+c\right)^2}{3}}\) (bđt \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)(*)

CM bđt * <=> \(3xy+3yz+3xz\le x^2+y^2+z^2+2xz+2xy+2yz\)

<=> \(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\ge0\) (luôn đúng)

<=> A \(\ge\frac{3}{5}\) --> ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Lê Anh
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
Fire Sky
Xem chi tiết
Madness
Xem chi tiết
không cần biết
Xem chi tiết
hoàng thị huyền trang
Xem chi tiết
Sơn Lê
Xem chi tiết
pham trung thanh
Xem chi tiết