Theo giả thiết ta có: \(a+b=c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Nên \(a+b+c=3\)
Từ giả thiết ta cũng có: \(ab+bc+ca=abc\left(a+b+c\right)\)
\(\Rightarrow5\left(a+b+c\right)^2\ge7\left(a+b+c\right)\)\(+8\left(ab+bc+ca\right)\)
Để ý rằng: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Nên suy ra \(5\left(a+b+c\right)^2\ge7\left(a+b+c\right)\)\(+\frac{8\left(a+b+c\right)^2}{3}\)
Hay \(a+b+c\ge3\)
\(\Rightarrow5\left(a+b+c\right)\ge7+8abc\left(đpcm\right)\)
P/s chưa chắc :))