Áp dụng bđt Svacxơ ta có : VT >= (a+b+c)^2/(2a+2b+2c) = (a+b+c)/2 = VP
=> đpcm
Áp dụng bđt Svacxơ ta có : VT >= (a+b+c)^2/(2a+2b+2c) = (a+b+c)/2 = VP
=> đpcm
cho a;b;c là các số thực dương. CMR (a^2/b+c) + (b^2/c+a) + (c^2/a+b) >= (a+b+c)/2 ? (áp dụng BĐT bunhiacopski)
CMR vs a,b,c là các số thực dương thì a^2/(b^2+c^2)+b^2/(c^2+a^2)+c^2/a^2+b^2>=a/(b+c)+b/(a+c)+c/(a+b)
với a,b là các số thực dương cmr \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}>=\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
Cho a,b,c là các số thực dương thoả mãn a+b+c=1
CMR (a+bc)/(b+c)+(b+ca)/(c+a)+(c+ab)/(a+b) >=2
cmr a^3+b^3/ab(a^2+b^2)+b^3+c^3/bc(b^2+c^2)+c^3+a^1/ca(c^2+a^2)>=1/a+1/b+1/c với a,b,c là các số thực dương
Cho a,b,c là các số thực dương bất kì. CMR :
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
a,b,c là các số thực dương thỏa mãn a+b+c=1. CMR: \(\dfrac{10a}{1+a^2}+\dfrac{10b}{1+b^2}+\dfrac{10c}{1+c^2}< =9\)
Sử dụng BĐT Bunhiacopxki cộng mẫu, lm bài toán sau:
Cho a,b,c là các số thực dương. CMR:
\(\dfrac{2\left(b+c-a\right)^2}{2a^2+\left(b+c\right)^2}+\dfrac{2\left(c+a-b\right)^2}{2b^2+\left(c+a\right)^2}+\dfrac{2\left(a+b-c\right)^2}{2c^2+\left(a+b\right)^2}\ge1\)
Cho a,b,c là các số thực dương
CMR:
1) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
2) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\)