Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Phương

Cho a,b,c là các số thỏa mãn \(o\le a,b,c\le2\) và a+b+c=3 

CMR: a3+b3+c3\(\le9\)

 

Thắng Nguyễn
8 tháng 2 2017 lúc 21:33

Không mất tính tổng quát giả sử a lớn nhất trong các số a,b,c. Từ đó suy ra

\(3a\ge a+b+c=3\Leftrightarrow2\ge a\ge1\left(1\right)\)

Từ điều kiện \(0\le b,c\le a\le2\). ta có 

\(a^3+b^3+c^3\le a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3=9\left(a-\frac{3}{2}\right)^2+\frac{27}{4}\left(2\right)\)

Mà từ \(b,c\ge0\) và \(a+b+c=3\).Lưu ý rằng khi ta có \(1\le a\le2\) từ \(\left(1\right)\) ta có: \(\left(a-\frac{3}{2}\right)^3\le\frac{1}{4}\left(3\right)\).

Vậy \(a^3+b^3+c^3\le9\left(a-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{9}{4}+\frac{27}{4}=9\)

Từ (2) và (3). Như vậy đã chứng minh xong

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=2\\b=1\\c=0\end{cases}}\)

Thắng Nguyễn
8 tháng 2 2017 lúc 22:41

Let \(a\ge b\ge c\)

Since \(f\left(x\right)=x^3\)is a convex function on  \(\left[0,3\right]\) and \(\left(2,1,0\right)›\left(a,b,c\right)\)

By Karamata's inequality we obtain 

\(9=2^3+1^3+0^2\ge a^3+b^3+c^3\)

Done!  :)))

P/s:viết tiếng anh giỏi quá =))

Thắng Nguyễn
9 tháng 2 2017 lúc 13:27

cái cách dưới cho mk sửa chút nhé 

cái dòng thứ 5 từ trên xuống, chỗ công thức mà mình đánh dấu là (3) đó sửa thành

\(\left(a-\frac{3}{2}\right)^2\le\frac{1}{4}\left(3\right)\) nhé !


Các câu hỏi tương tự
TrịnhAnhKiệt
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
Yim Yim
Xem chi tiết
Vô danh
Xem chi tiết
Lelemalin
Xem chi tiết
Lelemalin
Xem chi tiết
Khanh Pham
Xem chi tiết
Hoàng Thị Ngọc Anh
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết