Bài 1: Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\sqrt{\frac{a+b+4c}{a+b}}+\sqrt{\frac{b+c+4a}{b+c}}+\sqrt{\frac{c+a+4b}{c+a}}\ge3\sqrt{3}.\)
Bài 2:Cho các số thực dương a,b,c thoả mãn abc=1. Chứng minh rằng:
\(\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}+\sqrt[3]{\left(\frac{2b}{bc+1}\right)^2}+\sqrt[3]{\left(\frac{2c}{ca+1}\right)^2}\ge3.\)
Giúp mình với! Mình cần gấp.
Với các số dương a, b, c thỏa mãn a+b+c=3abc, chứng minh rằng:
\(a^4b^4+b^4c^4+c^4a^4>=3a^4b^4c^4\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^5}{bc^2}+\frac{b^5}{ca^2}+\frac{c^5}{ab^2}>=a^2+b^2+c^2\)
Với các số dương a, b, c. Chứng minh rằng:
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}>=\frac{1}{9}\left(a+b+c\right)\)
Cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge3\)
cho a,b,c là các số thực dương chứng minh rằng :
\(\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2+b^2}\ge3\)
Cho các số dương \(a,b,c\) thỏa mãn : \(a+b+c=3\)
Tìm: \(GTLN:M=\frac{1}{4a^2+b^2+c^2}+\frac{1}{a^2+4b^2+c^2}+\frac{1}{a^2+b^2+4c^2}\)
cho a,b,c là 3 số dương thoả mãn abc=1 chứng minh rằng 1/a^3(b+c)+1/b^3(a+c)+1/c^3(a+b)>=3/2
1. Cho 3 số a,b,c \(\ne\) 0 và đôi một khác nhau và thỏa mãn a+b+c = 0
Tính GTBT
Q = (\(\frac{a}{b-c}\)+\(\frac{b}{c-a}\)+\(\frac{c}{a-b}\))(\(\frac{b-c}{a}\)+\(\frac{c-a}{b}\)+\(\frac{a-b}{c}\))
2.Cho các số dương a,b,c, thỏa mãn a+b+c =\(\frac{3}{2}\)
Chứng Minh Rằng : \(\frac{1+b}{1+4a^2}\)+\(\frac{1+c}{1+4b^2}\)+\(\frac{1+a}{1+4c^2}\)\(\ge\)\(\frac{9}{4}\)
Cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}>3\)
xem giúp tớ giải đúng không với
Cho a, b, c là 3 số dương thoả mãn: abc= 1
Chứng minh rằng:
(2 - a2)/(a^2 +1) + (2 -b2 )/( b2 +1) +(2 -c2 )/(c2 +1) \(\le\)0