Ta có :
\(\sqrt{a +b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
<=> \(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le6\)
<=> \(2\left(a+b+c\right)+2\sqrt{a+b}\sqrt{b+c}+2\sqrt{c+a}\sqrt{b+c}+2\sqrt{b+c}\sqrt{c+a}\le6\)
<=> \(\sqrt{a+b}\sqrt{b+c}+\sqrt{c+a}\sqrt{b+c}+\sqrt{b+c}\sqrt{c+a}\le2\) (a)
Đặt \(\hept{\begin{cases}x=a+b\\y=b+c\\z=c+a\end{cases}}\Rightarrow x+y+z=2\left(a+b+c\right)=2\)
Suy ra
(a) <=> \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le2\)
Ta có bất đẳng thức phụ sau : Với x,y,z là các số dương thì
\(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\) (*)
Chứng minh : Nhân 2 cho 2 vế
(*) <=> \(2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\le2x+2y+2z\)
<=> \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Vậy \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)
Suy ra \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z=2\)
Vậy Với a + b + c = 1 thì \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Đẳng thức xảy ra <=> x = b = c = \(\frac{1}{3}\)