Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc
(a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc
(a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc
(a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc
thay a+b+c=0 ta được
03=a3+b3+c3+3.0(ab+bc+ac)-3abc
0=a3+b3+c3-3abc
=>a3+b3+c3=3abc
Ta có: `a+b+c=0`
`->c=-a-b`
suy ra: `a^3+b^3+c^3`
`=a^3+b^3+(-a-b)^3`
`=a^3+b^3-(a+b)^3`
`=a^3+b^3-(a^3+3a^2b+3ab^2+b^3)`
`=a^3+b^3-a^3-3a^2b-3ab^2-b^3`
`=-3a^2b-3ab^2`
`=-3ab(a+b)`
Vì: `a+b+c=0->a+b=-c`
Suy ra: `a^3+b^3+c^3=-3ab*(-c)=3abc`